Cycles in Agricultural Production:
The Case of Aquaculture

Larry Karp, Arye Sadeh, and Wade L. Griffin

The problem of determining optimal harvest and restocking time and levels is
considered. A continuous time deterministic control problem is used to study the case
where production occurs in a controlled environment. A stochastic control problem is
then used to determine rules for the cultivation of P. stylirostris which occurs in a
stochastic environment. The deterministic analog of the problem is also solved. The
two solutions are used to develop a measure for the value of a controlled environment
and for the value of information about the stochastic environment.
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Many agricultural and resource economics
problems involve cycles. In some cases the
length of growing season permits only one
crop; often, however, there is the possibility
of two or more crops. In these cases the date
of harvest constrains the date at which the
next cycle begins; the manager must balance
the opportunity cost of delaying harvest with
the effect of this delay on the payoff of the
current cycle.

It may be possible to control the environ-
ment, as in a greenhouse or with poultry pro-
duction, or the environment may be relatively
constant, as with mariculture in tropical cli-
mates. In these cases it is possible to operate
continuously, and cycles of harvest and re-
stocking (or replanting) should be approxi-
mately constant. If the environment cannot be
controlled, so that production takes place dur-
ing only part of the year, it is important to
determine how many crops to attempt to har-
vest in the growing season (Talpaz and Tsur).
These two situations provide a very general
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taxonomy of agricultural production. This pa-
per focuses on problems in aquaculture, but
the techniques used and the insights obtained
are applicable to a wide variety of agricultural
problems.

The next section considers the case where
production occurs continuously, i.e., where
the environment is ‘‘controlled.”” Abstracting
from price uncertainty, this can be modeled as
a deterministic, continuous time, autonomous
control problem. A harvest and subsequent re-
stocking is described as a ‘‘jump’ in the
biomass. The optimality conditions are inter-
preted and used to place bounds on optimal
harvest and restocking levels. This type of
problem is usually characterized using the
Faustman formula, which was developed to
determine the optimal cycle in timber produc-
tion (Clark, chap. 8). The innovation here is
that the optimality conditions determine the
restocking level as well as the harvest level.

The second. situation, where the environ-
ment is uncontrolled, is modeled as a stochas-
tic control problem and solved using dynamic
programming. The specific problem studied
involves shrimp farming in Texas. This is a
relatively new industry, and one of the princi-
pal questions confronting it is whether to at-
tempt two crops in a year. Stocking early in
the season or leaving shrimp in the ponds past
a certain date exposes the farmer to the risk of
a sudden fall in temperature and a killoff of the
stock. Optimal behavior under certain and sto-
chastic weather is compared, and sensitivity
studies are used to test the robustness of the
results.
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The question of optimal stocking and har-
vest levels is a variation of the classical ‘‘ma-
chine replacement problem’ in the dynamic
programming literature (Dreyfuss and Law).
This technique is well known but underex-
ploited in production problems. The study de-
scribed below is part of an attempt to develop
decision-making tools for aquaculturists in the
Southwest. These tools can be very useful for
new industries where there has been little op-
portunity to learn through previous mistakes.

Both the continuous time control problem
and the dynamic programming problem con-
centrate on the stocking/harvesting decision.
Inclusion of other types of controls, e.g., feed-
ing levels, is mentioned briefly. Both problems
assume prices are known.

A Controlled Environment and
Continuous Production

This section provides a simple model of har-
vest and stock replacement in a controlled en-
vironment under continuous production. It de-
rives an intuitive optimality condition and
characterizes the solution. The model is deter-
ministic and assumes that the stock of fish can
be described by a single state variable, bio-
mass. For many aquaculture problems, the
value of a unit of biomass depends on charac-
teristics such as average size of the fish or
shrimp. The assumption that a decision can be
made on biomass alone is a serious abstrac-
tion, but the model is sufficient for the present
purposes.

The biomass is given by x, which obeys the
growth equation

(1) dxldt = x = f(x, u),

where u is a vector of controls, such as feeding
rates and water temperature. In most of what
follows u is suppressed because the chief con-
cern here is the harvest and stocking decisions
and not behavior during the cycle when the
farmer incurs maintenance cost at the rate c(u,
x). The decision to harvest at the time £;,i = 1,
2, ..., nis modeled as a ‘“‘jump’’ in x at ¢;
equation (1) is valid only for ¢ # #;. At the
instant before harvest, ¢;, the biomass is x;”;
at the instant after harvest and restocking, ¢;",
it is x;". Where no ambiguity results, the sub-
script on x is suppressed. The present value of
harvesting and restocking at ¢; is

e "h(x7, x7),

3
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where r is the discount rate and ¢ is the net
revenue function, excluding the maintenance
cost fc()dr.

The value of the problem, given the initial
biomass x, at ¢, is

@ J(x,, t,) = max ZU

t|+— 1

+ e MxT, x+)],

ti
—e "c(x, wdt

subject to (1) for ¢ # ;. The maximization is
performed with respect to u(9), t;, x~ and x™.
Assume 7 is large enough so that behavior in
the first cycle is insensitive to changes in n.
Define the Hamiltonian

H = —e "cx, u) + N(x, w),

where \(7), the costate variable, gives aJ{x(p),
t1/dx, the shadow value of the stock. Standard
variational techniques yield the necessary
conditions at a jump (Bryson and Ho, 3.7).

(4a) A7) = e od(t)/ox”
(4b) MG = —e () ax ™t
(4c)  —re™"d(t) + H(t7) = H(E).

The notation &(t;), H(t/"), and H(¢]) refers
to those functions evaluated at their argu-
ments at ¢;, t;*, and ;. Equations (4a) and (4b)
state that the shadow value of the stock before
harvesting and after restocking should equal,
respectively, the marginal net revenue of an
additional unit at harvest and the marginal
cost of an additional unit at restocking. To in-
terpret (4c), use aJ/9t = — H(?), where the
Hamiltonian is evaluated at the optimal con-
trol at r. Then (4¢) states that the foregone
interest payment on invested net revenue plus
the value of delaying harvest should equal the
cost of delaying the beginning of the next
cycle.

Equations (3), (4a), and (4b) can be used in
(4c) to obtain

O) ré@) + i) - o)
= &e-(0f) + bur ().

The left of (5) is the “‘single-period’ interest
payments on the revenue from a cycle plus the
difference between costs in the last period and
the first period of a cycle. This should equal
the change in net revenue due to a unit in-
crease in stock before harvest times the single
period increase in stock before harvest plus
the change in net revenue due to an increase in
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restocking times the single-period increase in
stock after restocking.

In order to proceed, restrictions are placed
on ¢ and c. The most obvious restriction is
that at the optimum ¢,- =< |$,+|. For example,
suppose that ¢ is linear: ¢() = px~ — kx™;p
is the unit price of harvested biomass and £ is
the unit cost of restocking. Clearly p =< k, or
profits are infinite. Another example is ¢() =
&Id(x™,x7)], where 8() = x~ — x*; net reve-
nue depends only on the difference between
the preharvest and postrestocking levels of
biomass. This describes the situation where a
percentage of the stock is left in the pond to
start the next cycle.

A reasonable assumption for c¢( ) is c(t7) =
c(t™): the cost of maintaining the pond in the
period before harvest is at least as great as the
cost after restocking. A sufficient condition
for this inequality to hold is ¢ = c(x) and f()
= g(u)h(x) with ¢ increasing and convex in the
scalar ¥ and g concave. The first equality
states, for example, that the cost of mainte-
nance depends on the amount of food put into
the pond, not the number of fish who eat it.
The second equality states that it is possible to
shift up the natural growth rate; this may be
reasonable over some interval of x. The as-
sumptions on ¢( ) and f{ ) imply that « is in-
creasing over the cycle, so c(t”) > c(t™).

These two assumptions on ¢ and c, together
with (5), imply that f(¢;) > f(z;"): the growth
rate immediately before harvest must be
greater than the growth rate immediately after
harvest. A realistic assumption is that fIx,
u*(x)], where u*(x) is the optimal control, has
a unique maximum; designate this point as x,,,.
Define x* as the value x # x* that satisfies
f(x) = f(x*). The conclusion is that x™ < x,,
and x~ < x*.

In order to examine the forces at work, sup-
pose that optimal harvest takes place past the
point where the growth rate is maximized: x~
> x,,. This assumption is made to simplify the
explanation; if the assumption does not hold,
the explanation is modified in an obvious way.
The situation is shown in figure 1. There are
three considerations that tend to make it op-
timal for the growth rate to be less at stocking
than at harvest. The first is the positive dis-
count rate and the fact that stocking costs are
incurred at the beginning of the cycle. This
encourages x* to be lower, which emphasizes
the difference between f(¢;") and f(¢;"). The op-
portunity cost of delaying harvest, which in-
creases with the discount rate, makes it op-
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f(x,u*(x) )

x* Xn X x* X
Figure 1. Optimal harvest and stocking levels

with continuous production

timal to harvest sooner, decreasing x™. Forx™
> x,,, this also emphasizes the difference be-
tween f(t;") and f(¢;). The second considera-
tion involves |b,+| — &,- = 0; increasing the
difference encourages either or both x* and
x~ to be lower. If x~ > x,,, this unambigu-
ously increases f(t;") — f(t;"). The third con-
sideration is that c(¢;") > c(¢;) means that a
unit of time is more expensive at the end of
the cycle than at the beginning. In order to
compensate for this, the marginal productivity
of a unit of time must be greater at the end of
the cycle.

It is worth emphasizing that c(¢;7) > c(#") is
a sufficient, not a necessary, condition for
ft7) > f(¢"). It is possible that the marginal
cost of a unit of time is greater at stocking than
harvest [c(t;") > c(t7)] due for example to high
nursery costs, but that f(¢;7) > f(z;") still holds.
This is because of the operation of the first two
forces mentioned above, those involving r and
|bsx+| — bx-; A() is only one component of the
marginal product of time.

The above discussion is heuristic, rather
than a rigorous comparative static analysis of r
and the parameters of ¢( ) and ¢( ). Changing
any parameter may change the entire control
trajectory and thus the shape of fIx, u*(x)].
However, (5) involves estimable functions and
provides a testable hypothesis. The conjecture
that f(t ™) > f(z;") can also be tested; failure of
the inequality should imply high initial mainte-
nance costs.

It is possible to write down conditions such
as (4) for the case where the growth equation
is stochastic using methods described by, e.g.,
Mangel or Brock. However, these conditions
involve second-order partials of the value
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function J, and have no obvious interpreta-
tion. In order to include stochastics, it is con-
venient to use numerical methods, as de-
scribed in the next section.

Aquaculture in an Uncontrolled Environment

This section studies optimal cultivation of P.
stylirostris, a species of shrimp, in an uncon-
trolled environment. Shrimp mariculture is a
rapidly growing new industry in Central and
South America and Asia (U.S. Department of
Commerce 1984). The first shrimp farm has
been established in Texas and others are being
planned. Since there is virtually no practical
experience in Texas, there is a lack of general
agreement about management practices. The
principal controversy concerns whether to at-
tempt to grow two crops a year. The shrimp
are cultivated in outdoor ponds, where poor
weather may result in decreased growth rates
or loss of the entire stock. An analogous situa-
tion is faced by farmers in general; however,
in most cases farmers have the benefit of gen-
erations of experience, so it is plausible that a
near-optimal strategy has evolved. One goal of
this study is to help reduce the learning cost
for cultivators of P. stylirostris by suggesting
optimal practices.

As mentioned above, harvest price depends
on the quality of biomass, which depends on
factors such as average weight of the shrimp.
The two variables (states) used to describe the
stock level are weight of the shrimp and num-
ber of shrimp. In the following, ‘‘stock level”’
always refers to an ordered pair, giving weight
and number.

Cultivators are faced with a sequence of de-
cisions. First, they decide what time of year to
begin stocking and at what level to stock. Be-
cause weather is stochastic and consequently
growth is stochastic, it is not optimal to decide
in advance at what date to harvest, i.e., to
follow an open loop policy. It is preferable to
give harvest rules as a function of the current
stock level and time of year, i.e., to follow a
closed-loop policy. After the manager has de-
cided to harvest, he decides whether to re-
stock and, if so, at what level. A new cycle
begins.

The following three sections discuss, re-
spectively, the biological model, the economic
problem, and the summary of resuits.

Amer. J. Agr. Econ.
The Biological Model

The data to estimate the parameters of the fol-
lowing functions comes from experiments per-
formed at TAMU Mariculture Research Cen-
ter at Corpus Christi during years 1981-83.
The basic equations are

(6a) X = Xo(1 — aXo)™!, a<0

6b) W = (ap + aiX + axX>)(1 — e %),
k>0,

where X is number of fish, X, is the number at
stocking, W is average weight (in grams), and ¢
is biological time. Equation (6a) implies the
differential equation X = X2 Fish are
stocked in large numbers at small weight; the
rate at which they die decreases as their num-
ber decreases (Pardy et al.). Equation (6b) is a
generalization of the von Bertalanffy function
(Clark, p. 271). The coefficient of (1 — e~ )3
gives the weight in the limit as t — . In this
model, the limiting weight depends on the
number of fish in the pond. This reflects the
crowding that occurs in a confined environ-
ment. If the density of the fish is high, their
growth is diminished.

Weekly data was available for W, but only
initial and final observations were available for
X. The parameters of (6b) were estimated us-
ing nonlinear least squares assuming X fixed at
the harvest level. The estimated values of
ag, aj, a,, all of which were statistically
significant, were used in a simulation of sys-
tem (6). A search over possible values of a and
k was performed; the parameter values at
which the simulation most nearly duplicated
the set of observed boundary conditions were
used. It was not possible to estimate all of the
parameters of (6) jointly, using, for example,
pooled time-series and cross-sectional data
because of the absence of weekly observa-
tions for X.!

The discrete approximations to the differen-
tial equations implied by (6a, b) are

(73) X, = (XX%_I + Xt—ls and
(7)) W, = (fIf + 3glg + HW,_,,

wheref = gy + a1.X + a;X?andg =1 — e X,
Equation (7b) contains ¢, biological time. This
can be eliminated by solving (6b) for ¢ and

! The parameter values used in the control model are gy =
69.13,a; = —2.67 X 1073,2, =3.79 x 1075,k = —1.09 x 10!

a= —13x 107S.

s
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substituting into (7b). The result is a system of
autonomous difference equations. It is prefer-
able to work with autonomous equations
because this reduces the dimensions in the
optimization problem.

Recent tank experiments (Rubino) mea-
sured the effect of pond temperature on
growth rate. These results were used to
choose four intervals of pond temperature.
Temperatures lower than a threshold of 4° C
result in killoff of the entire stock. In the other
three intervals the growth parameter, k, is set
at 0, 50%, and 100% of its estimated value.
The observations used for the estimation oc-
curred at (approximately) biologically optimal
pond temperatures.

Pond temperature was assumed propor-
tional to air temperature, with the propor-
tionality factor varying over the year. The re-
lationship between air and pond temperature
was estimated using 1983 data. Data on air
temperature was available over 1949-83 (U.S.
Department of Commerce 1949-83). This was
used to construct a probability distribution of
air temperature for each week in the year. The
proportionality factors were used to convert
these into probability distributions of pond
temperature for each week. This completes
the stochastic biological model.

The Economic Problem

The essentials of the problem were discussed
above. The manager is allowed to choose the
number and weight to stock. Farmers can
choose to stock postlarvae (approximately
.01-gram [g.] animals) directly into a grow-out
pond or stock them in a nursery and then
transfer them to the pond as juvenile shrimp
(between 1 g. and 5 g. animals). Growth in the
nurseries is controlled, and the cost of raising
a certain number of shrimp of a certain weight
can be estimated. The results of Johns were
used to extrapolate the unit costs of raising
juveniles of different weights. These internal
prices were treated as market prices, and the
problem was modeled as if the farmer were
able to purchase the shrimp he puts in the
pond.

The farmer’s selling price was determined
using the ex-vessel price for shrimp reported
by the National Marine Fisheries Service in
the “‘Fishery Market News Reports’ for
1977-81 (U.S. Department of Commerce
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1977-81). The average prices were adjusted to
1983 levels. The prices depend on the shrimp
weight.

The feeding rate is assumed to be 25% of
body weight per day for weights less than 1.5
g. It decreases as a percentage of body weight,
reaching 3% for weights over 18 g. Feeding
costs were fixed at $.53 per kilogram (Pardy et
al.).

The state is an ordered pair giving weight
and number of shrimp in the pond. The num-
ber of shrimp was allowed to take 70 possible
values, and the weight 50 possible values, giv-
ing 3,500 combinations. These combinations
are represented by Z;, i = 1,2, ... 3,500. An
additional state, Zss0;, represents an empty
pond. The transition from one state to another
is governed by the autonomous version of (7a,
b) with the parameter k stochastic; the state
Zss01 is reached by harvesting or as a result of
a fall in temperature which causes a killoff.

The following definitions are used: J,,(Zy) is
the expected value of a one-acre pond with
stock level Z, when there are n weeks left in
the year and optimal rules are used; R(Z,) is
the revenue of harvesting stock Z,; C(Z)) is
cost of maintaining Z, for one week; S(Z,)
is cost of stocking an empty pond at Zj;
P,(h, j) is the probability that a pond contain-
ing stock Z, when there are n weeks to go will
contain Z; in the next period. (This involves
only probabilities resulting from weather con-
ditions.)

The recurrence relation is

8a) J.(Zy)
don’t harvest: — C(Z;)
— max + ;Pn(h,mn_l(zj)
harvest: R(Z,) + J,_-1(Z3s01)
forh =1,2,...,3,500, where j* is the set of j

for which P,(h, j) is greater than 0, and

8b) J.(Z3s01)

= max[~$(Z0) + 2, Poth Ma-rZ)]

Jeji*
The boundary condition is

(8c) Jo(Zy) = R(Zy).

Copyright © 2001 All Rights Reserved
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Equation (8c) states that in the last period, the
value of stock level Z,, is the revenue obtained
from harvesting Z,,. The assumption that there
is a ‘‘last period” is reasonable because it
would never be optimal to stock during winter
when killoff would certainly occur. Equation
(8b) states that the value of an empty pond
with n weeks to go is equal to the maximum
over Z, of minus the cost of stocking Z, plus
the sum of the expected value of having stock
size Z; next week times the probability that the
stock will be Z; next week given that Z, was
stocked. This equation determines whether
to stock an empty pond and, if so, at what
level.

Equation (8a) gives rules for harvesting. If
the farmer does not harvest, his expected re-
turns consist of two parts. The first is (minus)
the cost of feeding the shrimp. The second is
the expectation, taken over all possible next-
period stock levels, of the expected value of
future returns, conditioned on the stock level
in the next period. If he does harvest he re-
ceives the revenue from the sale of the current
stock plus the expected value of having an
empty pond in the next period. The rules for
harvesting depend on weight and number of
shrimp. Neither of these variables is perfectly
observed, but it is considerably more difficult
to obtain estimates of the number of shrimp.
This type of control rule will be more useful
when sampling and estimation techniques im-
prove. When a reliable estimate of the number
is not available, the history of observations on
weather and weight, and equations (7a, b), to-
gether with the known initial conditions can be
used to infer the current number. Methods for
the control of an imperfectly observed Mar-
kov chain can also be used (Astrom). These
methods involve straightforward extensions of
the techniques used here. Their disadvantage
is that they severely increase the dimensions
of the problem, since the ‘“‘state’’ becomes the
entire history of observations.

This model has two important limitations.
The assumption that there is an internal price
for juveniles which can be interpreted as a
market price, and used to construct the func-
tion S(), ignores the fact that production of
juveniles is not instantaneous. A more com-
plete model would include the interaction of
stochastic demand for juveniles on optimal
production of juveniles. The current model is
a step in this direction. The second limitation
is that harvest is assumed to take one period.
Manpower and equipment constraints may
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make this impossible in a large farm. In this
case, it becomes important to stagger harvests
for the various ponds. Relaxing these assump-
tions will result in a much larger problem. Be-
cause the state already contains 3,501 ele-
ments, the problem may grow unmanageable.
It is useful to begin with a simpler situation
and then add complexity.

Summary of Results

A deterministic and stochastic version of the
model was used to determine the importance
of uncertainty. In the deterministic version the
probability density for pond temperature in
each week was concentrated in the interval
with the highest probability. There are several
ways of comparing the results of the two ver-
sions. One method compares the certainty
equivalent path in the stochastic model with
the known path in the deterministic model.
The certainty equivalent® path is obtained by
using the control rules derived from the sto-
chastic model and setting the pond tempera-
ture for each week in the interval with the
highest probability. The two paths describe
the behavior under identical conditions of a
manager who knows what the future weather
is and one who only knows the probability dis-
tribution of weather.

In the deterministic model the manager
stocks 22,000 2-gram shrimp the first week of
April and harvests 13,250 29-gram shrimp
around the beginning of August. In the sto-
chastic model the manager stocks 23,000 2-
gram shrimp in the last week of April and har-
vests 14,500 26-gram shrimp in the beginning
of August. In both models the managers re-
stock 19,500 3-gram shrimp. In the stochastic
model 13,250 27-gram shrimp are harvested
fourteen weeks later; in the deterministic
model, 12,750 29-gram shrimp are harvested
sixteen weeks later. With the weather uncer-
tain, the manager stops cultivation as soon as
there is a positive probability of kill-off. At the
beginning of the season he postpones initial
stocking past the time where probability of

2 This is not the standard use of “‘certainty equivalent.”” The
term usually refers to the result of setting the random term equal
to its expected value in the optimization process, i.e., of replacing
a stochastic problem with a deterministic one. In this case, the
complete stochastic problem is solved. The control rules from this
problem are used in the state system which describes the evolu-
tion of the stock; this depends on stocking and harvesting deci-
sions. Then the random element (the parameter k) is replaced by a
specific realization, the one used to solve the deterministic prob-
lem.

Copyrlgﬁf © 20071 AN Rights Keserved
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kill-off falls to zero. During these weeks there
is a positive probability that the growth pa-
rameter k = 0, so weight gain is minimal but
mortality still occurs.

The most important result is that both mod-
els indicate that two crops are optimal. The
first harvest for both models results in greater
biomass than the second; for both harvests the
biomass is greater in the deterministic model
than the stochastic model. Stocking for the
second crop uses a smaller number of larger
shrimp.

Another method of comparing the two mod-
els uses the rules from (8b), which gives the
decision whether to harvest. These rules are
presented in matrix form. For each week there
is a matrix with all possible weight/number
combinations. A zero in the i, j position for n
weeks to go means do not harvest if the weight
is W; and the number X in that week; a one in
that position means harvest. This form of con-
trol rule is convenient for managers, but it is
difficult to summarize and compare so much
data. An attempt at this was made using a
three-dimensional plot of weight, number, and
weeks to go. In each matrix the positions
which contain zeros tend to be clustered to-
gether, as expected. The boundary of this
cluster in the weight, number plane was
graphed against weeks to go, resulting in a
three-dimensional surface. An example for the
deterministic model is given in figure 2.
The combinations of size and weight below
the surface gives the region of zeros where
harvest does not take place. The graph for the
stochastic model is very similar. The principal
difference is that the entire surface is shifted
down, so it is optimal to harvest at lower
weight and number combinations. This indi-
cates increased caution in the presence of un-
certainty.

In figure 2 flat regions near the beginning
and end of the year indicate that it is not worth
feeding the shrimp during those weeks be-
cause a kill-off is certain. The figure shows
two valleys, around the twentieth and thirty-
seventh week. These indicate the importance
of timing. In these valleys it may be optimal to
harvest at particular number-weight combina-
tions for which it is optimal not to harvest a
few weeks earlier or later. In general, the
height of the surface is decreasing in number;
that is, for a particular time-weight-number
combination it may be optimal not to harvest;
increasing the number makes it optimal to har-
vest. The explanation is that the death-rate is
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Figure 2. Region beneath surface given
weight-number combination where harvest
does not occur

higher. when there are more shrimp in the
pond, so it is less attractive to postpone har-
vest.

The surface in the figure is not smooth, be-
cause there are occasional stray zeros in the
midst of clusters of ones. The opposite also
occurs but does not affect the graph. This indi-
cates a marginal decision. The manager is
nearly indifferent between harvesting and not
harvesting; the criterion selects the most
profitable alternative, but an incremental
change in size or weight may reverse the deci-
sion. The matrix of zeros and ones can be re-
placed by a matrix whose elements give the
exact advantage of one decision over the
other. This would be useful in sensitivity stud-
ies but is not pursued hesg.

The results can also be used to determine
the value of a controlled environment and the
value of information about the uncertain envi-
ronment. Define the following three functions:
J,.PP, the value of an empty pond with n weeks
to go given that the environment is determin-
istic and the optimal (for the deterministic
problem) rules are followed; J,5* the expected

Copyright © 2001 All Rights Reserved
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value of an empty pond with n weeks to go
given that the environment is stochastic and
the optimal (for the stochastic problem) rules
are followed; J,P5, the expected value of an
empty pond with n weeks to go given that the
environment is stochastic but the rules from
the deterministic problem are used. The func-
tions J,,”” and J,,*S are found by solving equa-
tions (8a, b, c) for the appropriate problems;
J,.PS is obtained from solving (8a, b, ¢) with the
“max’’ operator replaced by the operator,
*“choose the alternative given by rules of the
deterministic problem.”” Since the ‘‘deter-
ministic’’ rules are suboptimal for the sto-
chastic problem, J,,°5 < J,55 for all n.

The functions J,,°P and J,,5% reach their max-
imum at, respectively, n = 39 (the first week
of April) and n = 36 (the last week of April),
with J3,°P = $3,930 and J56%° = $3,060. That
is, being able to maintain the pond with cer-
tainty at its median temperature results in an
expected increase in value of almost 30%.

The functions J,,®? and J,,°% are both non-
decreasing in n, since it is possible to leave a
pond empty for another week. The function
J.P% is not (weakly) monotonic in n, since the
deterministic rules prescribe stocking too
early for the stochastic environment; J,”S
reaches its maximum at n = 36, with J5c2° =
$2,530. If the initial stocking occurs at the op-
timal time (the last week in April) but pro-
ceeds according to the deterministic rules,
there is an expected loss of almost 17% of the
optimal program. If the initial stocking occurs
at the time prescribed by the deterministic
rules, there is an additional expected loss of
7% (J35°° = $2,320). This decomposes the
loss due to using a deterministic model to de-
scribe a stochastic environment into a loss
due to beginning the season too early and to
using the wrong stocking/harvesting rules.

The yearly expected value of an empty pond
can be used to calculate the capitalized value
of an empty pond, which determines the
profitability of investment. Suppose that the
true environment is stochastic, but the deter-
ministic problem is used to determine stock-
ing/harvesting rules and to approximate the
value of the pond. The approximation is up-
wardly biased by almost 70% (3,930/2,320 =
1.7). In this case, a deterministic approxima-
tion would lead to considerable overinvest-
ment in aquaculture.

The model assumed that the threshold tem-
perature below which kill-off occurs is 4° C.
To test the importance of this estimate, the
threshold was increased to 9° C. This changes
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the probability distribution for the growth pa-
rameter. The stochastic model was re-solved,
and the certainty equivalent path was ob-
tained. The stocking date and level is un-
changed, but it is optimal to leave the first
crop in the pond five weeks longer. At harvest
the stock consists of 13,250 29-gram animals;
restocking occurs at 8,000 3-gram animals.
Harvest occurs two weeks earlier than with
the lower threshold, with a stock of 7,400 16-
gram animals. The important result is that two
harvests are still optimal, but the second crop
is very small. This means that very little
crowding occurs, so the shrimp grow rapidly.
The expected value of the pond falls approxi-
mately 15%.

The effect of a change in consumer tastes
was tested by increasing the price of large
shrimp. The price of 29-gram shrimp was in-
creased by 3%, and for each additional gram
the price was increased by a further 3%, so the
price of 45-gram shrimp was increased by
51%. The certainty equivalent path stocks
only one crop, of 13,750 2-gram animals.
These are left in the pond for twenty-eight
weeks, and harvested when there are 8,200 44-
gram animals. Not surprisingly, the emphasis
is on quality. The expected value of a pond is
$3,170, an increase of only about 4%. The
model is also insensitive to small changes in
the cost of feeding. Feeding costs were in-
creased by 10% and the stochastic model was
rerun with both the original sales price of
shrimp and the hypothesized higher price
schedule. The certainty equivalent path was
unchanged in both cases; the expected value
of the pond fell by about 2%.

Conclusion

Two approaches to modeling stocking/har-
vesting problems in aquaculture were pre-
sented. The problem of continuous production
in a controlled environment was discussed
first. This differs from the standard ‘‘optimal
stopping problem,” since harvest and stock-
ing levels are jointly determined. The optimal-
ity conditions were interpreted and used to
place bounds on the biomass at stocking and
harvesting. These bounds involve the growth
rate of the biomass. Plausible sufficient condi-
tions were given which insure that the growth
rate is greater at harvest than at stocking.
These results appear to be new. Given infor-
mation on the maintenance function, ¢( ), and
the net revenue function, (), equation (5)
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can be used as a test for optimality. The prin-
cipal use of the analysis, however, is as an aid
in developing intuition about the problem.

The second approach studied the cultivation
of P. stylirostris in the Southwest, using dy-
namic programming. This is a new industry,
still in the early stages of the learning curve.
The results of this study suggest optimal
stocking and harvest rates and may decrease
the cost of learning.

Several important points emerged. First,
the optimality of two harvests was robust to
changes in the stochastic specification and in
the threshold temperature of kill-off. The op-
timality of two harvests increases the impor-
tance of timing. Second, the time interval dur-
ing which harvest is most likely to occur is
approximately the same in the stochastic and
deterministic models. This is evident from in-
spection of figure 2 and its stochastic analogue
and also from the comparison of the determin-
istic and the certainty equivalent paths. This
information suggests a way of reducing the
size of the problem: allow the manager the
option of harvesting only when he is likely to
exercise that option. The size of the model is
important because future research will in-
crease the detail of the model by including im-
perfect state observations and constraints im-
plied by the absence of a market for juveniles.
Third, although the control rules in the deter-
ministic and stochastic models are similar
(compare comments above regarding fig. 2),
the expected values of profits differ consider-
ably. This suggests that a principal use of the
stochastic model will be as an aid in determin-
ing investment levels in aquaculture. Deter-
ministic models are likely to encourage exces-
sive investment. Fourth, the model provides a
convenient way of measuring the value of a
controlled environment and the value of infor-
mation about the uncontrolled environment.
The first quantity is the difference between the
expected values of an empty pond in the sto-
chastic and deterministic problems, at the be-
ginning of the season. The second guantity is
the difference between the expected value of
an empty pond in the stochastic problem and
the expected value when the (suboptimal) de-
terministic rules are used in a stochastic envi-
ronment. This quantity can be decomposed
into the value of information about when to
start the season and information about how to
behave once the season has begun.

The results are conditioned on the accu-
racy of the biological model. Data problems,
particularly the absence of time series on
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the number of shrimp, make it difficult to ob-
tain reliable parameter estimates. Continued
experiments at the TAMU Mariculture Re-
search Center and the cooperation of econo-
mists and fish biologists should lead to im-
proved models. The results also depend on the
stochastic process for weather. Data to esti-
mate this process can be obtained for other
parts of the country, and the methods used
here applied elsewhere. The longer-run goal of
this study is to develop management tools that
can be used in a variety of circumstances. The
computer program used to solve this problem
can easily be adapted by changing parameter
values.

[Received September 1984; final revision
received April 1985.]
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